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 Abstract.  Although the ordinary least squares (OLS) estimates are unbiased in 

the presence of heteroscedasticity, these are no longer efficient. This problem becomes 

more complicated when the violation of constant error variances comes together with 

the existence of outliers. The weighted least squares (WLS) procedure is often used to 

estimate the regression parameters when heteroscedasticity occurs in the data. But 

there is evidence that the WLS estimators suffer a huge set back in the presence of 

outliers. Moreover, the use of the WLS requires a known form of the heteroscedastic 

errors structures. To rectify this problem, we proposed a new method that we call two-

step robust weighted least squares (TSRWLS) method where prior information on the 

structure of the heteroscedastic errors is not required.  In the proposed procedure, the 

robust technique is used twice. Firstly, the robust weights are used for solving the 

heteroscedasic error and secondly, the robust weighting function is used for 

eliminating the effect of outliers. The performance of the newly proposed estimator is 

investigated extensively by real data sets and Monte Carlo simulations. 

 Keywords: Heteroscedasticity, Weighted least squares, Two-step robust 

weighted least squares, Outliers, Monte Carlo simulation. 

 

JEL Classification: C12, C22, C52, C63 

 

1. INTRODUCTION 

 

The linear regression model is commonly used by statistics practitioners in many 

different fields like engineering, physics, medicine, biology, chemistry, social science 

and economics. The regression parameters are often estimated by the ordinary least 

squares (OLS). Under the usual assumptions, the least-squares estimators possess many 
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desirable properties. In particular, these assumptions imply that the estimators of the 

parameters will be unbiased, consistent, and efficient in the class of linear unbiased 

estimators. A commonly used assumption is the constancy of error variances or 

homoskedasticity, mainly because of which the OLS estimators retain the minimum 

variance property. In a real life situation it is really hard to believe that the error 

variances will remain constant and that is why the violation of this assumption which 

causes the heterogeneity of error variances or heteroskedasticity is more prevalent in 

nature. The main problem with the violation of homoskedaticity assumption is that the 

usual covariance matrix estimator of the OLS becomes biased and inconsistent. 

A large body of literature is now available [1-3,7-10,16,20,21,23,25,26] for correcting 

the problem of heteroscedasticity. The correction for heteroscedasticity is very simple 

by means of the weighted least squares (WLS) if the form and magnitude of 

heteroscedasticity are known. The WLS is equivalent to perform the OLS on the 

transformed variables. Unfortunately, in practice, the form of heteroscedasticity is 

unknown, which makes the weighting approach impractical. When heteroscedasticity 

is caused by an incorrect functional form, it can be corrected by making variance-

stabilizing transformations of the dependent variables [4] or by transforming both sides 

[2]. However, the transformation procedure might be complicated when dealing with 

more than one explanatory variable. Montgomery et al. [20], Kutner et al. [16], and 

others have tried to find the appropriate weight to solve the heteroscedastic problem 

when the form of heteroscedasticity is unknown. White [28] proposed the 

heteroskedasticity-consistent covariance matrix (HCCM) estimators in this regard.  

Different forms of HCCM estimators such as the HC0, HC1, HC2, HC3 and HC4 have 

been proposed [5,6,12,13,18,28]. However, there is no general agreement among 

statisticians about which of the five estimators of the HCCM (HC0, HC1, HC2, HC3, 

HC4) should be used [5,6,17,18]. Chatterjee and Hadi [3] proposed an estimator which 

is weight based, but these weights depend on the known structure of the 

heteroscedastic data. Montgomery et al. [20] and Kutner et al. [16] proposed 

estimators which do not depend on the known structure of the heteroscedastic data. But 

the main limitation of the Montgomery et al. [20] estimator is that it cannot be applied 

to more than one regressor situation. The estimator proposed by Kutner et al. [16] can 

be applied to more than one variable and it does not depend on the known form of 

heteroscedasticity, but we suspect this estimator is not outlier resistant.  

It is now evident that a few atypical observations (outliers) can make the entire 

inferential procedure meaningless [2,19,24]. The weighted least squares also suffer the 

same problem in the presence of outliers [19]. We also believe that the HCCM 

estimators should suffer from the same problem, as they are based on the OLS 

residuals. Generally speaking, none of the estimation techniques work well unless the 

effect of outliers in a heteroscedastic regression model is eliminated or reduced by 

robustifying the WLS or HCCM. Therefore, in this article we address the following 

http://en.wikipedia.org/wiki/Bias_of_an_estimator
http://en.wikipedia.org/wiki/Consistent_estimator
http://en.wikipedia.org/wiki/Efficient_(statistics)
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question: which robust WLS or HCCM procedure should be used when 

heteroscedasticity and outliers occur at the same time?  This problem motivates us to 

develop a new and more accurate estimation technique. However, in this article, our 

study is only confined to the development of the robust WLS. In the presence of 

outliers we have some robust techniques for the detection of heteroscedasticity [15, 

22]. Unfortunately, there is not much work in the literature that deals with the 

estimation of the regression parameters in the presence of both heteroscedasticity and 

outliers when the structure of heteroscedasticity is unknown. Although Habshah et al. 

[9] has proposed this type of robust estimation procedure, but their procedure can be 

applied to only one regressor.  

In this article, we propose a two-step robust weighted least squares (TSRWLS) 

estimator which can be applied for more than one regressor when the form of the 

heteroscedasticity is not known.  Firstly, for solving the heteroscedastic problem we 

estimate the robust initial weights following the idea of Kutner et al. [16] and 

secondly, we estimate the parameters of the model based on Huber’s [14] weight 

function in order to reduce the effect of outliers. Our results show, as expected, that the 

existing estimators are very sensitive to outliers whereas our proposed estimator is less 

sensitive to outliers. The proposed TSRWLS estimator is described in section 2. 

Section 3 provides an illustrative example to show the better performance of the 

proposed method. Section 4 reports the results of a Monte Carlo simulation study 

which is designed to investigate the performance of the proposed method and, section 

5 contains the concluding remarks.  

 

2. TWO-STEP ROBUST WEIGHTED LEAST SQUARES (TSRWLS)  

Consider the general multiple linear regression model: 

                                                y X                                                                 (1) 

where  1 2, , ,
T

ny y y y  is an 1n vector of response variable,  1 2, , ,
T

nX x x x  

is an n p fixed design matrix including the intercept,   is an p 1  vector of unknown 

linear parameters, and   is an 1n vectors of errors. The traditionally used OLS estimator 

of   is 
1ˆ ( )T TX X X y  . It has mean   (i.e., it is unbiased) and covariance matrix  

                                            
1 1ˆcov( ) ( ) ( )T T TX X X X X X                                  (2) 

where ( )TE    , a positive definite matrix. Under homoscedasticity, we have 

2

nI  , and it follows that the
2 1ˆcov( ) ( )TX X   , which can be estimated by 

2 1ˆ ( )TX X 
, where 

2

1
ˆ ˆ ˆ ˆ ˆˆ / ( ), ( ,..., )T

nn p        being the n- vector of OLS 
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residuals. Under heteroscedasticity, that is, 
2Z  , where Z is a diagonal matrix, 

equation (2) becomes 

                                             
2 1 1ˆ( ) ( ) ( )T T TV X X X ZX X X                                (3) 

Define 
1W Z  , where W is a diagonal matrix with diagonal elements or 

weights 1 2, ,..., nw w w . It can be easily proved that the weighted least squares estimator 

is 
1ˆ ( )T T

WLS X WX X Wy   and
2 1ˆcov( ) ( )T

WLS WLS X WX   . ˆcov( )WLS also can 

be estimated by 
2 1ˆ ( )T

WLS X WX 
where 

2 2ˆˆ ( )WLS i iw n p   . It is not difficult to 

compute the weights of the W matrix, if the heteroscedastic error structure of the 

regression model is known. From a standard adaptation of the Gauss-Markov theorem, 

one can easily prove that, if the W matrix is known, the WLS provides the best linear 

unbiased estimator. Moreover, under normality of the errors, it is the best unbiased 

estimator ever. But this situation almost never exists in real applications and the 

estimated weights are used instead. Although it is difficult to assess the effect of using 

estimated weights, but it is generally believed that small variations in the weights due 

to estimation do not often affect a regression analysis or its interpretation much. But 

the presence of outliers should have an adverse effect on the determination of weights. 

Likewise the OLS method, the WLS regression is also sensitive to the presence of 

outliers. If potential outliers are not properly addressed, they will definitely affect the 

parameter estimation and other aspects of a weighted least squares analysis.  

In this paper, our initial goal is to find an appropriate weight matrix W in which the 

heteroscedastic error structure is unknown. It is worth mentioning here that the W 

matrix should perform well in the presence of heteroscedasticity and outliers.  To find 

the robust weight matrix W, we propose a two-step robust weighted least squares 

(TSRWLS) estimator. The TSRWLS is an extension of works of Habshah et al. [9] 

and Kutner et al [16]. Habshah et al. [9] proposed a robust weighted least squares 

(RWLS) estimator to solve the heteroscedatic and outlying problem by developing 

robust weighting technique. Instead of fitting regression with all the data, they 

suggested finding several “near-neighbor” groups in the explanatory variable. The 

group medians represent the explanatory variable (X) and the groups in the response 

variable Y are formed in accordance with the groups formed in X. The sample median 

absolute deviations (MAD) of each groups of Y and the median of each group of X are 

then computed. The square of group MADs in Y are then regressed on the 

corresponding group medians of X by the least trimmed of squares (LTS) [24] method 

and the regression coefficients from this fitting are computed. Using these coefficients 

and full X values, the fitted values are obtained. The inverse of these absolute fitted 

values then form the initial weights. The final weights are obtained after multiplying 

these weights by Huber’s weight [14].  
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The main limitation of this procedure is that it cannot be applied to more than one 

regressor. To overcome this problem we incorporate Habshah et al. [9] and Kutner et 

al. [16] estimators. Hereafter we will refer to the Kutner et al. [16] estimator as KNN 

(Kutner, Nachtsheim and Neter) estimator. The KNN estimator starts with fitting a 

linear regression by the ordinary least squares and conducting some preliminary 

analysis of the residuals. It is obvious that the megaphone shape of absolute residuals of 

the OLS against the fitted values may confirm the non-constancy of error variances. 

Therefore, Kutner et al. [16] suggested regressing the absolute residuals against the 

fitted values and obtain a standard deviation regression function. To obtain the weights, 

the fitted values from this standard deviation regression function are computed and the 

inverse of the square fitted values are considered as the desirable weights. We use the 

LTS estimator, instead of the OLS in the KNN algorithm to get the initial robust weights. 

The TSRWLS consists of the following two steps. In step 1 we form the initial weight 

and in step 2 we obtain the final weight. 

Step1:  

(i) Find the fitted values ˆ iy  and the residuals ˆ
i  from the regression model in 

equation (1), by using the least trimmed of squares (LTS) method. 

(ii) Regress the absolute residuals, denoted as is  where ˆ| |i is  , on ˆ iy  also by 

using the LTS method. 

(iii) Find the fitted values ˆis  from step 1(ii). 

(iv) The square of the inverse fitted values would form the initial robust 

weights, i.e., we obtain 
2

1
ˆ1 ( )i iw s . 

Step2:  

The robust weighting function such as the Huber function [14], the Bisquare function 

[27] and the Hampel function [11] can be used to obtain the final weight. However, in 

this study, we will use the Huber’s [14] weights function which is defined as 

                                            2

1 | | 1.345

1.345
| | 1.345

| |

i

i

i

i

e

w
e

e




 




 

The constant 1.345 is called the tuning constant and ie  is the i-th standardized 

residuals of the LTS obtained from step 1(i). We multiply the weight 1iw  with the 

weight 2iw  to get the final weight iw . Finally we perform a WLS regression using the 

final weights iw . The regression coefficients obtained from this WLS are the desired 

estimate of the heteroscedastic multiple regression model in the presence of outliers.  
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3. EXAMPLE  

In this section, we consider a real data to evaluate the performance of the proposed 

TSRWLS method. 

 

3.1  Education Expenditure Data  

 

This data is taken from Chatterjee and Hadi [3] which consider the per capita income 

on education projected for 1975 as the response variable (Y) while the three 

explanatory variables are 
1X , the per capita income in 1973; 

2X , the number of 

residents per thousand under 18 years of age in 1974, and 
3X , the number of residents 

per thousand living in urban areas in 1970 for all 30 states in USA. According to 

geographical regions based on the pre-assumption, the states are grouped in a sense 

that there exists a regional homogeneity. The four geographic regions (i) Northeast, (ii) 

North centre, (iii) South, and (iv) West. The LTS estimator detected that the 

observation 49 [Alaska (AK)] is an outlier. The residuals vs. fitted values of OLS 

(Standardized), KNN and TSRWLS are plotted in Fig.1. Fig.’s 1(a) - 1(c) display the 

residuals-fitted plots without considering Alaska. If the variances of the error terms are 

constant then one can expect that the residuals are randomly distributed around zero 

residual, without showing any systematic pattern. Fig.1 (a) clearly indicates a violation 

of the constant variance assumption. This signifies that the OLS fit is inappropriate 

here, as there is a clear indication of heterogeneous error variances. However, the 

KNN and TSRWLS fit, presented in:  
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Figure 1. The OLS, KNN and TSRWLS fitted values vs. residuals plots without 

AK, (a)-(c); with AK, (d)- (f)  

 

Fig.1(b) and Fig.1(c) respectively, do not show any symmetrical shape like the OLS 

fit. It shows that for this ‘clean’ data (without AK) the non-constancy of error 

variances is not reflected in KNN and TSRWLS. To see the effect of outliers, we 

include the observation Alaska and the resulting residuals and fitted values are plotted 

in Fig.’s 1(d)-1(f). We see that OLS residuals are affected in the presence of outliers, 

but the effect of AK observation is not substantial on KNN and TSRWLS estimators.  

 

3.2  Modified Education Expenditure Data  

In reality we often have to deal with multiple outliers. For this reason, we deliberately 

change four data points to generate big outliers. Our changed data points are cases 46, 

(a) (b) (c) 

(d) (e) (f) 
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47, 48 and 50  by taking the value from outside the well known 3- sigma normal 

distance in Y direction. In fact, we replace the data points of Y for observations 46, 47, 

48 and 50 by 
.| |conty  where 

.conty  are generated as 9 yy s , with  y  and ys  as the 

respective mean and standard deviation of Y. In this situation, it is more likely that 

these points would become big outliers. With this modified data, now we have five 

outliers (since this data already contained one outlier, i.e., Alaska). When the LTS is 

employed to the data, all 5 outliers are identified.  

OLS fitted values

O
L
S

 S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

200 250 300 350 400 450

-1
0

1
2

3

KNN fitted values

K
N

N
 r

e
s
id

u
a
ls

0 50 100 150 200

-2
0

2
4

TSRWLS fitted values
T

S
R

W
L
S

 r
e
s
id

u
a
ls

4 6 8 10 12 14

-2
0

2
4

6

OLS fitted values

O
L
S

 S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

200 220 240 260 280 300 320 340

-2
-1

0
1

2

KNN fitted values

K
N

N
 r

e
s
id

u
a
ls

8 10 12 14

-2
-1

0
1

2

TSRWLS fitted values

T
S

R
W

L
S

 r
e
s
id

u
a
ls

8 10 12 14

-2
-1

0
1

2

 

Figure 2. The OLS, KNN and TSRWLS fitted values vs. residuals plots with 10% 

outliers, (a)-(c) ; without 10% outliers, (d)-(f)  
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The plots of the residuals against the fitted values of the OLS, KNN and TSRWLS for 

the modified data are illustrated in Fig.’s 2(a)-2(f). It is observed from Fig.’s 2(a) and 

2(b) that in the presence of outliers the patterns of residuals are completely destroyed. 

That is, the OLS and KNN are greatly affected by outliers and so they are not good 

estimators for the remedy of the heteroscedastic problem when outliers are present. It 

is interesting to note that in Fig. 2(c), the TSRWLS shows the scatter plot of the 

residuals except the data points which are outliers. Like as Fig.1, the residual-fitted 

plots without the 10% outliers for the OLS, KNN and the TSRWLS are shown in 

Fig.’s 2(d)-2(f). Fig. 2(d) signifies that the OLS cannot remedy the problem of 

heteroscedasticity but the KNN and proposed TSRWLS are successful as it is 

expected. It re-emphasizes our concern that the KNN might good in the absence of 

outliers whereas our proposed TSRWLS might be good in the presence or absence of 

outliers since it is keeping the scatter plot in both situations. In particular, the residuals 

plots of Fig.1 and Fig.2 show that the TSRWLS estimator is successful to cope with 

the problem of heteroscedsaticity and outliers.   

 

We know that graphical displays are always very subjective and that is why we would 

like to present some numerical summaries of the examples considered above. Here, we 

compare the performance of the proposed TSRWLS estimator with the existing 

estimators, such as the OLS, KNN and five versions of the HCCM estimators. Table 1 

displays the summary statistics such as estimates of the parameters and their standard 

errors. It also considers three different situations: when there are no outliers, with only 

one outlier (AK), and with 5 outliers. In the absence of outliers, all estimators perform 

equally in terms of parameter estimates and their standard errors and the resulting 

values are relatively close. But things change dramatically when outliers are present in 

the data. All estimators except the TSRWLS are strongly affected by outlier(s). We 

observe that the OLS and the KNN estimators not only have more bias in comparison 

to the TSRWLS, but also the sign of  3
ˆ

OLS  and 3
ˆ

KNN  have been changed in some 

occasions. By looking at the results of standard errors it is clear that both the OLS and 

the KNN estimators together with the five versions of HCCM break down easily even 

in the presence of a single outlier. They produce much higher standard errors as 

compared with the TSRWLS estimator and things deteriorate when multiple outliers 

are present in the data.   It can be concluded from Table 1 that the proposed TSRWLS 

is the best overall estimator as it possesses less bias and standard errors as compared to 

other estimators in the presence of heteroscedasticity and outliers.  
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Table1: Regression estimates of the Education Expenditure Data 
 

  
0̂  1̂  2̂  3̂  

Without 

outliers 

 

OLS 

 

-277.5773 

 

0.0483 

 

0.8869 

 

0.0668 

KNN -334.4223 0.0550 0.9809 0.0599 

TSRWLS -283.2395 0.0508 0.8827 0.0573 

 

With 

AK 

outlier 

OLS -556.5680 0.0724 1.5521 -0.0043 

KNN -423.7212 0.0620 1.1782 0.0519 

TSRWLS -365.4785 0.0543 1.0779 0.0633 

 

With 

multiple 

Outliers 

OLS -452.0702   0.0821     0.8200     0.1936     

KNN -536.6901   0.1219     1.0639     -0.0983     

TSRWLS -391.5358   0.0605     1.0815     0.0626     

 

Standard Errors of Estimators 

 

Without 

outliers 

OLS 132.4229 0.0121 0.3311 0.0493 

KNN 108.2248 0.0111 0.2642 0.0419 

HC0 100.5722 0.0098 0.2590 0.0396 

HC1 109.5119 0.0106 0.2821 0.0431 

HC2 105.5744 0.0103 0.2733 0.0421 

HC3 111.0343 0.0108 0.2891 0.0449 

HC4 101.1556    0.0098   0.2609 0.0399 

TSRWLS 105.9811 0.0106 0.2732 0.0422 

 

With 

AK 

outlier 

OLS  123.1953  0.0116  0.3147   .0514 

KNN 96.8830 0.0107 0.2313 0.0405 

HC0 172.6703 0.0157 0.4242 0.0559 

HC1 187.6852 0.0170 0.4611 0.0607 

HC2 222.4836 0.0199 0.5415 0.0673 

HC3 290.5865 0.0257 0.7025 0.0834 

HC4 192.3270    0.0173   0.4700    0.0600 

TSRWLS 102.6924 0.0105 0.2486 0.0402 

 

With 

multiple 

Outliers 

OLS 464.4632     0.0437      1.1864      0.1938      

KNN 182.0470  0.0204      0.4591      0.0397     

HC0 400.5560   0.0257   1.0027   0.1379 

HC1 435.3869    0.0279   1.0898 0.1499 

HC2 446.6578  0.0304  1.1106  0.1503 

HC3 513.9515   0.0372    1.2681   0.1671 

HC4 415.541    0.0274     1.0371   0.1411 

TSRWLS 161.8082     0.0170      0.3932      0.0630      
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4. SIMULATIONS  

In this section, we report a Monte Carlo simulation study which is designed to compare 

the performance of the proposed TSRWLS estimator with the OLS, KNN and five 

versions of HCCM estimators. We re-use a design of Cribari-Neto [5]. In this 

simulation study the ‘good’ observations are generated according to linear regression 

model:   

                                0 1 1 2 2i i i i iy x x        ,     i=1,2,…,n.                             (4) 

where ~ (0,1)i N  and ( ) 0i jE i j     . To generate a heteroscedastic regression 

model, we consider 
2 2 2

1 2exp( )i i iax ax    

with 
2 1  and a is an arbitrary constant. The covariate values are selected as random 

draws from the U(0,1) distribution. The level of heteroscedasticity is measured as 
2 2max( ) / min( )i i   , i = 1,2,…,n. 

For each sample sizes we set a =.4 and a =.8, which yield  2 and  4, 

respectively. The values of the regression parameters used in the data generation scheme 

are 0 = 1 = 3 = 1. Then we generate the contaminated model. At each step, one 

‘good’ observation is substituted with an outlier. We focus on the situation where the 

errors are contaminated normal distribution. To generate a certain percentages of 

outliers, we use the regression model 

                       0 1 1 2 2 ( .)i i i i i conty x x        , i=1,2,…,n.                                    (5) 

where ( .) ~ (0,1) (0,10)i cont N Cauchy  . The percentages of outliers can be varied. 

Since Cauchy is a longer tailed distribution, we are convinced that the contaminated 

normal errors would produce outliers.  

 

The robustness measures and standard errors of the parameters of the OLS, KNN, and 

TSRWLS methods are investigated by considering the samples of size 50, 100 and 150.  

We performed 10,000 simulations using the S-Plus programming language. Summary 

values such as the mean estimated values 

                                                           
( )

1

1 ˆ
m

k

j j

km
 



                                                  (6) 

are then computed based on  m = 10,000 replications. This also yields the bias 

j j  . The mean-squared error (MSE) is given by: 
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Table 2: Robustness measure of the parameters of the different estimators,  =2 

 

%OTa 
Estimators 

Bias Relative measure of RMSE  

OLS KNN TSRWLS OLS KNN TSRWLS 

Coeff.                                         Sample Size n= 50 

0% beta0 -0.0059 -0.0013 -0.00198      – 103.8433 101.2776 

beta1 0.0140 0.0060 0.006226      – 100.6190 96.7113 

beta2 -0.0008 -0.0027 -0.00227      – 99.9619 95.5360 

10% beta0 0.9357 0.1849 0.005338 0.2806 1.2529 68.1788 

beta1 -0.3898 0.1293 -0.01026 0.3632 1.3702 76.1437 

beta2 -2.1139 -1.1011 -0.00035 0.4208 1.0991 74.1417 

15% beta0 -85.7342 -36.0054 0.011383 0.0049 0.0122 71.4086 

beta1 82.7205 33.1180 -0.0172 0.0079 0.0204 83.3345 

beta2 32.2882 9.1732 -0.00564 0.0155 0.0437 71.9914 

20% beta0 -195.6400 -87.9323 -0.00422 0.0028 0.0056 52.1659 

beta1 -372.1610 -146.0850 0.00136 0.0016 0.0045 59.9413 

beta2 494.4786 181.1661 0.012381 0.0015 0.0041 56.5258 

                                          Sample Size n= 100 

0% beta0 0.0005 -0.0018 -0.0005      – 103.0542 100.6648 

beta1 0.0004 0.0035 0.0011      – 101.8250 98.3953 

beta2 -0.0014 -0.0009 -0.0016      – 101.6148 97.7441 

10% beta0 10.5640 1.3684 -0.0007 0.0342 0.2374 81.5563 

beta1 -15.3713 -2.4119 0.0032 0.0339 0.1863 83.6645 

beta2 -9.1550 -1.9725 -0.0043 0.0460 0.2411 84.4919 

15% beta0 0.0707 0.8919 -0.0046 0.0970 0.3056 77.1535 

beta1 0.9458 -1.4343 0.0033 0.1534 0.3415 79.3901 

beta2 1.7874 0.9745 0.0045 0.0827 0.3002 81.0387 

20% beta0 3.5876 -0.8170 -0.0050 0.0605 0.1566 76.7077 

beta1 -5.4541 -0.7692 0.0059 0.0733 0.2030 77.2481 

beta2 -7.0086 -1.8175 0.0014 0.0487 0.1171 77.1561 

                                          Sample Size n= 150 

0% beta0 0.0016 0.0027 0.0029      – 103.0130 99.8505 

beta1 0.0002 -0.0015 -0.0023      – 101.6369 96.9257 

beta2 -0.0041 -0.0048 -0.0046      – 102.2114 97.8810 

10% beta0 -6.0098 -1.2097 -0.0026 0.0327 0.1486 80.4602 

beta1 0.1340 -0.1719 0.0031 0.0619 0.3243 88.3611 

beta2 7.7121 1.7646 0.0056 0.0482 0.2295 79.0424 

15% beta0 -28.7559 -5.8467 -0.0078 0.0104 0.0556  69.3154  

beta1 22.4220 4.0933   0.0019 0.0204 0.1298 81.2431 

beta2 32.6964   7.1617   0.0141 0.0156 0.0819 71.1146 

20% beta0 -1.9031 -0.2281 -0.0043 0.0804 0.2444 64.2251 

beta1 7.1205 1.1036 0.0056 0.0609 0.3344 77.9002 

beta2 -0.6418 0.0808 0.0049 0.0558 0.2371 64.3352 

a. Percentages of outliers  
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Table 3: Robustness measure of the parameters of the different estimators,  =4 

%OTa 
Estimators 

Bias Relative measure of RMSE 

OLS KNN TSRWLS OLS KNN TSRWLS 

Coeff.     Sample Size n= 50 

0% beta0 -0.0105 0.0039 0.0025      – 112.4879 125.1855 

beta1 0.0152 0.0020 -0.0028      – 101.3282 109.5216 

beta2 0.0157 -0.0013 0.0028      – 88.8705 105.7927 

10% beta0 -3.5890 -0.7598 -0.0043 0.1139 0.5216 34.7474 

beta1 6.1317 1.6857 0.0042 0.1631 0.6527 53.7951 

beta2 -0.9029 -0.9975 0.0112 0.1860 0.4935 33.8907 

15% beta0 1.3242 0.3470 0.0316 0.4223 1.1818 18.9640 

beta1 0.6738 0.3530 0.0084 0.4953 1.2997 42.5771 

beta2 0.0245 0.8270 -0.0787 0.4228 0.6019 13.5809 

20% beta0 -5.0442 -1.9398 0.0122 0.1050 0.2184 34.7901 

beta1 -11.4162 -4.4248 -0.0129 0.0678 0.1864 44.8670 

beta2 15.4846 5.8186 -0.0215 0.0692 0.1736 37.7802 

 Sample Size n= 100 

0% beta0 -0.0035 -0.0048 -0.0041      – 111.8690 118.3724 

beta1 0.0076 0.0185 0.0122      – 95.1401 107.5837 

beta2 -0.0002 -0.0029 -0.0039      – 84.9755 108.4458 

10% beta0 21.0349 5.9017 -0.0032 0.0300 0.1167 93.8616 

beta1 18.5522 4.5442 0.0009 0.0469 0.1668 91.8525 

beta2 -46.2991 -11.0444 0.0077 0.0252 0.1145 91.7733 

15% beta0 -22.9743 -5.2984 0.0010 0.0473 0.1843 89.0858 

beta1 28.5573 7.3703 -0.0056 0.0472 0.1543 87.4307 

beta2 22.0493 6.4229 -0.0093 0.0701 0.2321 89.0389 

20% beta0 6.6902 2.4548 0.0109 0.0737 0.2251 86.4168 

beta1 0.7136 0.3268 -0.0034 0.0393 0.1187 83.4477 

beta2 -11.0030 -3.5738 -0.0058 0.0888 0.3042 82.9778 

 Sample Size n= 150 

0% beta0 -0.0008 -0.0080 -0.0023      – 107.5062 116.1884 

beta1 0.0045 0.0137 0.0055      – 99.3414 106.0485 

beta2 0.0006 0.0092 0.0006      – 101.1024 109.6160 

10% beta0 -6.2692 -2.1037 -0.0004 0.0587 0.1424 84.3554 

beta1 47.2234 9.9197 -0.0022 0.0145 0.0732 93.4204 

beta2 -52.8924 -12.6937 -0.0015 0.0114 0.0507 72.4760 

15% beta0 3.1242 1.1391 -0.0052 0.1338 0.5144 66.6502 

beta1 -1.0545 -0.4605 0.0090 0.2199 0.7523 81.2984 

beta2 -9.7318 -4.4918 0.0017 0.0727 0.2105 66.9573 

20% beta0 -5.6191 -0.4311 0.0102 0.0450 0.1757 61.5970 

beta1 4.1717 1.0792 -0.0219 0.0548 0.1820 77.9695 

beta2 17.2251 4.9047 0.0038 0.0447 0.1585 60.9549 

a. Percentages of outliers  
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Table 4: Standard errors of the parameters of the different estimators,  =2 

%OTa 
Estimators 

Standard errors of the Parameters 

OLS KNN HC0 HC1 HC2 HC3 HC4 TSRWLS 

Coeff. Sample Size n=50 

0% beta0 0.5146 0.3886 0.4282 0.4555 0.4458 0.4642 0.4296 0.3924 

beta1 0.8891 0.6044 0.6339 0.6743 0.6594 0.6861 0.4296 0.5738 

beta2 0.7555 0.6148 0.6451 0.6863 0.6708 0.6978 0.6471 0.5737 

10% beta0 17.7305 7.2738 12.7274 13.5398 13.2629 13.8246 12.7736 1.0664 

beta1 23.3970 10.4365 17.1504 18.2451 17.7991 18.4765 12.7736 1.5815 

beta2 22.5848 12.0001 17.5826 18.7049 18.1509 18.7429 17.6240 1.5880 

15% beta0 99.5604 52.3143 115.5253 122.8992 118.8438 122.2770 115.7264 1.3825 

beta1 131.3787 52.4478 116.7274 124.1781 120.0780 123.5445 115.7264 1.9774 

beta2 126.8181 40.8369 78.8850 83.9202 81.1562 83.5130 79.0293 1.9604 

20% beta0 461.5606 119.7004 231.0199 245.7658 238.8034 246.9060 231.5823 1.8428 

beta1 609.0697 189.9633 487.4313 518.5440 501.7849 516.6386 231.5823 2.6153 

beta2 587.9272 206.0266 513.1987 545.9561 527.6012 542.4713 514.0404 2.5808 

  Sample Size n=100 

0% beta0 0.4458 0.3648 0.3969 0.4092 0.4048 0.4128 0.3973 0.3551 

beta1 0.7449 0.4964 0.5188 0.5348 0.5291 0.5397 0.3973 0.4657 

beta2 0.6107 0.4793 0.5117 0.5275 0.5213 0.5311 0.5121 0.4470 

10% beta0 34.5617 11.2185 36.9714 38.1149 37.6980 38.4399 37.0007 1.0382 

beta1 42.2446 15.8414 45.6371 47.0485 46.5277 47.4371 37.0007 1.3507 

beta2 39.5932 14.9017 41.7365 43.0273 42.5197 43.3189 41.7669 1.3046 

15% beta0 42.3308 16.4106 37.6879 38.8535 38.3326 38.9895 37.7111 1.3154 

beta1 51.7408 19.4518 42.2961 43.6042 43.0333 43.7847 37.7111 1.7094 

beta2 48.4933 21.1654 48.0123 49.4972 48.8209 49.6446 48.0409 1.6383 

20% beta0 49.3378 18.8709 37.3376 38.4924 37.9208 38.5145 37.3571 1.5341 

beta1 60.3054 24.3215 47.7927 49.2708 48.5488 49.3186 37.3571 2.0007 

beta2 56.5204 25.3062 49.1922 50.7136 49.9345 50.6894 49.2160 1.9201 

  Sample Size n=150 

0% beta0 0.2972 0.2506 0.2702 0.2757 0.2734 0.2766 0.2703 0.2422 

beta1 0.6195 0.4124 0.4257 0.4344 0.4315 0.4373 0.2703 0.3780 

beta2 0.5844 0.3632 0.3881 0.3961 0.3931 0.3980 0.3883 0.3379 

10% beta0 24.2137 10.4550 26.7381 27.2838 27.0830 27.4326 26.7472 0.7400 

beta1 34.1740 11.4259 29.3331 29.9317 29.7236 30.1194 26.7472 1.1437 

beta2 31.3201 14.7913 36.6304 37.3780 37.0851 37.5457 36.6419 1.0459 

15% beta0 0.2972 0.2506 0.2702 0.2757 0.2734 0.2766 0.2703 0.2422 

beta1 0.4195 0.4124 0.4257 0.4344 0.4315 0.4373 0.2703 0.3780 

beta2 0.3844 0.3632 0.3881 0.3961 0.3931 0.3980 0.3883 0.3379 

20% beta0 40.5311 19.1497 35.1320 35.8490 35.5474 35.9684 35.1426 1.1576 

beta1 57.2035 20.1988 49.2925 50.2985 49.9564 50.6300 35.1426 1.7229 

beta2 52.4263 25.1124 58.2668 59.4559 58.9954 59.7339 58.2860 1.6235 

a. Percentages of outliers  
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Table 5: Standard errors of the parameters of the different estimators,  =4 

%OTa 
Estimators 

Standard errors of the Parameters 

OLS KNN HC0 HC1 HC2 HC3 HC4  TSRWLS 

Coeff. Sample Size n=50 

0% beta0 0.7841 0.3701 0.6144 0.6536 0.6396 0.6661 0.6165 0.4456 

beta1 1.9347 0.8175 0.9655 1.0271 1.004 1.0447 0.6165 0.7656 

beta2 1.4988 0.8770 1.0245 1.0899 1.0661 1.1096 1.0279 0.7956 

10% beta0 35.6725 11.7913 24.8378 26.4232 25.8755 26.9634 24.9266 1.2850 

beta1 47.0730 18.1229 34.6098 36.8189 35.9004 37.2473 24.9266 2.4265 

beta2 45.4390 21.9545 36.0837 38.3869 37.2307 38.4245 36.1657 2.5319 

15% beta0 35.8009 14.8161 23.1191 24.5948 23.9461 24.8099 23.1831 1.6114 

beta1 47.2424 20.1513 31.2127 33.2050 32.2503 33.3304 23.1831 2.7513 

beta2 45.6025 23.8200 32.6295 34.7123 33.5511 34.5078 32.6899 2.8267 

20% beta0 62.2517 28.3594 42.9578 45.6997 44.3926 45.8858 43.0599 2.1857 

beta1 82.1466 35.3214 58.6896 62.4358 60.5577 62.4975 43.0599 3.6111 

beta2 79.2951 38.2728 59.2919 63.0765 60.9630 62.6927 59.3943 3.6728 

  Sample Size n=100 

0% beta0 0.6887 0.3983 0.5922 0.6105 0.6039 0.61588 0.5927 0.4347 

beta1 1.0141 0.6564 0.7964 0.8210 0.8121 0.8282 0.5927 0.6320 

beta2 0. 9778 0.6713 0.8224 0.8478 0.8377 0.8534 0.8229 0.6246 

10% beta0 73.8892 21.7184 68.7456 70.8717 70.0285 71.3372 68.7943 1.3103 

beta1 90.3146 28.0017 77.1267 79.5120 78.4760 79.8510 68.7943 1.8999 

beta2 84.6461 30.8492 93.2082 96.0909 94.9240 96.6736 93.2725 1.8854 

15% beta0 71.6299 24.5261 65.2019 67.2185 66.2860 67.3900 65.2394 1.6604 

beta1 87.5531 33.5901 81.1361 83.6454 82.4972 83.8834 65.2394 2.3836 

beta2 82.0579 31.4783 75.9616 78.3110 77.1846 78.4293 76.0027 2.3416 

20% beta0 94.1637 28.8749 64.8414 66.8468 65.8750 66.9275 64.8766 1.9582 

beta1 115.0960 46.7776 104.9376 108.1831 106.5877 108.2669 64.8766 2.7995 

beta2 107.8721 38.3557 80.8973 83.3992 82.2061 83.5387 80.9417 2.7655 

  Sample Size n=150 

0% beta0 0.44058 0.2661 0.3851 0.3930 0.3899 0.3947 0.3853 0.2896 

beta1 0.9817 0.5672 0.6501 0.6634 0.6591 0.6683 0.3853 0.5202 

beta2 0.7998 0.4776 0.5963 0.6085 0.6040 0.6117 0.5965 0.4498 

10% beta0 57.0626 13.8041 31.3104 31.9494 31.6907 32.0759 31.3199 0.9061 

beta1 80.5352 24.1373 80.8688 82.5192 81.9391 83.0239 31.3199 1.6290 

beta2 73.8095 28.1042 86.6113 88.3789 87.7312 88.8662 86.6402 1.4442 

15% beta0 43.3293 15.7365 32.5162 33.17987 32.8919 33.2723 32.5254 1.1761 

beta1 61.1527 20.0178 42.6891 43.5603 43.2259 43.7700 32.5254 1.9996 

beta2 56.0457 27.0094 59.6327 60.8497 60.2767 60.9283 59.6475 1.7925 

20% beta0 60.2810 25.2604 51.2814 52.3280 51.8535 52.4326 51.2949 1.4753 

beta1 85.0775 30.5681 67.0884 68.4575 67.8914 68.7049 51.2949 2.4898 

beta2 77.9724 37.3080 84.9627 86.6966 85.9239 86.8970 84.9854 2.2724 

a. Percentages of outliers  
 



 

 

 

 

 

Habshah Midi , Sohel Rana  , A.H.M. Rahmatullah  Imon 
 

_____________________________________________________________________ 

 

                                  
2 ( ) 2

1

1ˆ ˆ( ) ( ) ( )
m

k

j j j j j

k

MSE
m

    


                               (7) 

Therefore, the root mean squared error (RMSE) is given by 1 2ˆ[ ( )]jMSE  . As a measure 

of robustness, we compute the ‘relative measure of RMSE’ which is the ratio of the 

RMSEs of the estimators of contaminated models compared with the least-squares 

estimators for good data. The relative bias and relative measure of RMSE of the OLS, 

KNN, and TSRWLS methods are presented in Tables 2 and 3. Several interesting 

points appear from Tables [2- 3]. For ‘clean’ data, all the three estimators considered 

here are fairly close to one another with respect to the values of the robustness 

measure. By inspecting the bias and the values of robustness measures in Table 2 and 

3, it is observed that the performance of both the OLS and the KNN tends to 

deteriorate with the increase in the percentage of outliers and they produce poor 

estimates at both levels ( 2 and  4) of heteroscedasticity. The performance of 

the TSRWLS is very satisfactory here. Irrespective of the percentages of outliers it 

maintains producing low bias and small RMSE. 

Tables 4 and 5 present the standard errors of the parameter estimates of the OLS, KNN, 

five versions of HCCM, and TSRWLS estimators. We observe that the standard errors 

of the five versions of HCCM estimates also reasonably close to the KNN and 

TSRWLS, for the ‘clean’ data. If the form of heteroscedasticity is unknown, many 

authors recommend using the HCCM based estimators [5,6,12,13,17,18, 28]. But these 

results clearly show that likewise the OLS and KNN, HCCM based estimators may 

breakdown even in a very small percentage of contamination and their performances 

also tend to deteriorate with the increase in the percentage of outliers. Nevertheless, the 

TSRWLS are not much affected by outliers. The biases and robustness measure of the 

TSRWLS are consistently small and deteriorate slightly as the percentage of outliers 

increases.  

 

5. CONCLUSIONS 

In this article, we propose a two-step robust weighted least squares estimator which is 

designed for handling the problem of heteroscedasticity and outliers in multiple 

regression when the form of the heteroscedasticity is unknown. We have examined the 

performance of the proposed TSRWLS estimator and compare its performance with 

other existing estimators. Although the KNN, HCCMs and TSRWLS estimators are 

reasonably close to one another in the presence of heteroscedasticity with clean data, 

but the TSRWLS is the most reliable estimator as it possesses the least bias and 

standard errors. However, the performance of KNN and HCCMs are much inferior to 

the TSRWLS when contamination occurred in the data. The empirical study reveals 
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that the proposed estimator is outlier(s) resistant. Larger bias in estimates and standard 

errors, and smaller values of robustness measures clearly prove that the OLS, KNN 

and the five versions of HCCM are easily get affected by outliers. To the contrary, 

both graphical and numerical evidences signify that the TSRWLS is capable of 

rectifying the problems of heteroscedasticity and outliers at the same time. Thus, the 

TSRWLS estimates emerge to be conspicuously more efficient and more reliable in 

comparison with other estimators considered in this article.  
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